Tuesday, January 9, 2018

Heaven on Wheels...

Tissue Plasminogen Activator (tPA) is a clot-busting drug. It can radically reduce the physical problems after stroke. tPA has been used for years, but not enough. There are 2 things that get in the way of tPA being used more:

1.There is reluctance among some MDs to administer it; they think they may get sued for causing a worse stroke (remember: tPA is only for "block" ischemic stroke, but would make a "bleed" hemorrhagic stroke worse).

2. Survivors often miss the "window" of time tPA is thought to be effective (~3-4 hours). Only about one third of all survivors call 911 after their stroke. That is, very few survivors access emergency care that would be required to administer tPA.

The first issue, above, is discussed here. Irony: MDs are more likely to get sued if they don't administer tPA!

The second issue, this may change. There is new technology and it’s on wheels! Have a look at this vid.

More videos here.

Sunday, December 3, 2017

How much does it cost to have a stroke?

The cost of having a stroke is variable. For instance, in the United States, stroke can easily bankrupt you-- or not, depending on your insurance, your wealth, and the combination of both. In other countries in Europe it is much less of a burden. Or, lets say, the burden is more shared. But it does not matter where you are, almost always there are extra expenses along with less income.

But the data is scarce. You'd think the amount having a stroke might cost someone would be well studied. It is not. At least not lately (most studies were done in the 90s). There is a lot of research on the macro issue; how much of a burden it is on a country or a national health care system. But not much on the individual's burden. The best estimate is this: 

The long-term costs of stroke (not including lost wages is $163,432.37  for an ischemic stroke.  There is one more recent study that suggests the amount is $140,048.

But both of these estimates seem low. I have heard survivors say that their stroke has cost has cost more than a quarter of a million dollars. 

Finally, there is no way to estimate the cost. How do you estimate what might have been?

If you are struggling with the issue of expenses after stroke-- at least here in the US, there is a resource that may help.

Thursday, November 23, 2017

Motor Relearning After Stroke: Hardwiring Recovery

Motor learning is what everyone does to learn any new movement. Motor relearning is what stroke survivors do to recover any lost movement. In some ways learning movement and relearning movement after stroke are the same; they both rely on the neurons in the brain to control movement. In some ways learning and relearning a movement are inherently different because a new and different part of the brain is used to control the movement. And there is a more obvious and less science-heavy difference: Learning a movement is fun. Relearning a movement is fraught with frustration.

Motor Learning And Motor Relearning: The Differences.

For stroke survivors, the part of the brain that was used their entire lives to control particular movements is dead. The dead portion of the brain becomes a fluid-filled cavity (called an infarct). Some of the neurons used in the pre-stroke movement may be reengaged. But those neurons will have to create novel relationships with other neurons to recover the pre-stroke movement. There is no potential to relearn a movement in the same way it was originally learned.
Motor relearning after stroke has another distinction from motor learning. Most motor learning that we do is derived from play. The joy of learning a new skill propels us the development of that skill. Consider skiing. You start out and you fall (and fall and fall) and you get very wet and very cold. And then you do something right and that feeling of making the turn and carving the snow becomes the carrot at the end of the motor learning stick. But stroke survivors are not learning new skills; they’re simply relearning movements that they used to do perfectly well as they attempt to cajole new neurons to do old tricks. Where’s the fun in that?
The fact that motor relearning is not necessarily fun provides a supreme challenge to the coaching abilities and motivational skills of therapists as they shepherd stroke survivors, not towards the joy of playful motor learning, but towards the monumental task of motor relearning.

Motor Learning And Motor Relearning: The similarities.

In some ways relearning to move after stroke and “regular” motor learning are similar. Both require neuroplastic rewiring of the motor and sensory portions of the brain. Both types of learning require the learner to do the hard work (or play) of learning. No therapist, no matter how talented, can learn it for them. This is where the coaching skills of clinicians are tested. Motor relearning only happens if the stroke survivor remains motivated to move. And stroke survivors will only remain motivated if they know why they're doing what they're doing. The neuroscience is clear: only through the volitional movement of the stroke survivor does neuroplastic brain rewiring take place. Providing stroke survivors with a nervous system “user’s manual” complete with “instructions” and even “troubleshooting tips” is vital to the process of recovery. And just like any good manual, the simpler the better.

Motor learning simplified

Therapists usually think about the nervous system in terms of upper motor neuron vs. lower motor neuron, brain vs. spinal cord or central nervous system vs. peripheral nervous system. There is another way to view the part of the nervous system that impacts motor learning: front vs. back.
Consider the following thought experiment. You decide you will scratch your head, but you don’t want to mess up your hair, so you need a single nail to fall on the exact epicenter of itchiness. You begin by estimating where your arm and hand is in space (proprioception). Messages from the muscle spindles, Golgi tendon organs and other proprioceptors provide the feeling of the position of the hand and arm. That feeling becomes a sensory impulse that enters the back (dorsal root) of the spinal cord. The impulse travels up the spinal cord and ends up in the back of the brain, in the sensory portion of the cortex, just behind the central sulcus, a large fissure that separates the front of the brain from the back. The impulse, with “fine-tuning” by other parts of the brain, jumps to the anterior portion of brain and provides a movement strategy. These instructions descend the spinal cord and exit the front of the spinal cord. The impulse then goes into peripheral nerves which terminate at the target muscles that power the movement. To review:

·       The impulse goes from the proprioceptors in the limb toàthe back of the spinal cord toà the back of the brain toà the front of the brain andà out the front of the spinal cord.

Back to front. You scratch your head. But let’s say you miss your target and your nails land in the wrong place. You use this feedback to self-correct and you again send an impulse from the back to the front of your nervous system. Your nails target the exact point of itchiness. The adjustment that you’ve made is the essence of motor learning. In this thought experiment each attempt was felt and each feeling was used to mitigate the next attempt.
          Now let's continue the thought experiment with a more complicated movement. Consider typing. Typing involves precise and delicate movements of the fingers. Learning how to type involves feeling the position of the fingers (proprioceptive input) followed by repeated attempts to hit the correct keys on the keyboard (motor output). Each time the pinky finger makes a foray towards the “enter” key the feeling of a correct attempt is processed by the brain. If enough repeated attempts are successful, the movement is learned. If the learned movement is done over weeks or months or years, it is seared as a neuronal pathway into the brain. This is why we never forget how to ride a bike or swim even if we haven't done either in years. The motor strategies are “hardwired”. Hardwiring useful patterns of movement in stroke survivors is motor relearning.

Saturday, November 4, 2017

Shocking Subluxation

Electrical stimulation for subluxation. There's a lot of info out there, and its confusing. That's where I come in!

Here ya go...

There has been some debate about where electrodes should be placed for NMES and subluxation. Traditionally, the placement has been the deltoid and supraspinatus. However, it has been pointed out that the placement over the supraspinatus is problematic because the supraspinatus is covered by the upper trapezius. It is thus unlikely that the supraspinatus can be activated by surface stimulation. A better choice is the deltoid and the infraspinatus and teres minor.


Tuesday, October 31, 2017

Lower Extremity Recovery After Stroke: Nothing New Under The Sun

Research into post-stroke rehabilitation has tipped some sacred cows. Traditional neurofacilitation techniques have generally wilted under the intense glare of clinical research. 1 Partial weight supported walking had mixed results in the LEAPS trial. Robotic devices seem to provide no benefit beyond that of conventional therapy. But all this bad news is actually good news for a number of reasons.
First, we need to know what doesn't work and what is equivocal. Clinical research is not about coddling the status quo, it's about getting us closer to the truth. And in this regard it is brutal. Once a particular treatment option is tested the researchers are left with the basic question: what does the data say? At that point the data becomes impersonal. It says what it says. The data may tear a hole right through a cherished intervention. But this is a good thing. We need to know what does not work. But there is nuance as well... we may find out that something isn’t AS effective as we thought it was. Or we may find out its effective, but not as effective as other things. Or we may find out that we don't know its level of efficacy. That’s a core irony of research: sometimes research reveals that we just don’t know. I think this is what often makes clinicians in rehab distrustful of research. What research reveals is often muddled, difficult to interpret and delineates few definitive positions. But that's what science does. Physicists argue about the origin of the universe, anthropologists argue about the origin of species, geologists disagree about where the oil is etc. etc. But in healthcare there seems to be this perspective that you're not allowed to be indecisive. You're the clinician; you have to know the answers because the patient is right there in front of you and needs treatment. But maybe it's not indecisiveness. Maybe its thoughtfulness.
Research takes time and it is often difficult to interpret, true. But it also provides the best general guidelines for clinical practice. And it’s not all “bad” news; research does give us clues as to what does work. And what research is revealing about what works for the lower extremity after stroke, well… let’s just say there's not very much new under the sun. What got me thinking about the power of the basics of rehab was a simple statement in a recent systematic review. This was the statement...

Task-specific gait training improves gait post-stroke.
Wow. That's not very research-y. It pretty much says that walking helps retrain walking. Clinicians in rehabilitation have been doing gait training since before Mary McMillan. Then again, nothing should be assumed. I've seen clinical research that questions many of the foundational assumptions from both PT and OT.
So gait training works. That's good to know. What else works to rehabilitate the lower extremities after stroke? Balance training seems to work, although some techniques work better than others. For instance repetitive sit to stand protocols, tai chi, and cycling training seem to work, whereas body vibration, biofeedback in standing practice don't.
Strength training helps lower extremity function. Some clinicians in rehab are concerned that strength training will exacerbate spasticity. Intuitively that makes sense; if you increase the strength of muscles used during walking you will also increase the strength of some overwhelmingly strong spastic muscles, thereby increasing spasticity. But as counterintuitive as it may seem, increasing muscular strength does not increase spasticity. In fact, muscles that are spastic are actually weaker than their counterpart of the contralateral side. Bottom line: muscle strengthening does not decrease motor control and, in some patients at least, increases distance walked and gait speed.
Cardiovascular training seems to be helpful in improving gait post-stroke. In some studies cardio training has been observed to decrease need for assistance during ambulation, and increase walking speed and distance.Strength training and cardio training, cornerstones of rehabilitation since its inception may simply work because movement after a stroke is so fatiguing. In fact, fatigue is the leading complaint among stroke survivors. When age matched against folks who don’t exercise but are otherwise healthy, stroke survivors have half as much cardio strength and half as much affected-side strength. And you can add to that the fact that everything a survivor does (usually measured against walking) takes twice as much energy. And energy is essential to implementing most leading edge concepts in lower extremity stroke rehabilitation. For instance, we know that intensity works rehabilitate the lower extremity after stroke. Robust repetitive practice protocols rewire the brain after stroke to provide for better motor outcomes. But patients may not be able to benefit from these protocols because they are simply too pooped to practice. “Banking” energy, through strengthening of the cardiovascular and muscular systems can give survivors a fighting chance on their road to recovery.
So, there it is. What we always thought worked, works.

  1. Kollen BJ, Lennon S, Lyons B, et al. The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke 2009;40:e89-e97.
  2. Saunders DH, Greig CA, Mead GE, Young A. Physical fitness training for stroke patients. Cochrane Database Syst Rev 2009.

Blog Archive