|
My son Jesse, swallowing. |
Dysphagia: difficulty swallowing.
Stroke is the leading cause of dysphagia.
Approximately 60% of stroke survivors develop dysphagia at some point after stroke. Dysphagia is the most frequent cause of pneumonia poststroke. It can also delay other parts of recovery. (It's hard to recover when you can't swallow.)
The treatment for dysphagia may follow the same neuroplastic rules as every other form of post stroke recovery. For example, repetitive practice of wrist extension will change the brain to make wrist extension easier as time goes on. But repetitive practice of wrist extension has no downside. The worst thing that can happen is that you get tired. But if you repeatedly practice swallowing there may be a risk. What happens if you can't swallow whatever it is you're trying to swallow? You choke! You may aspirate. Aspiration involves having whatever you attempt to "swallow" go "down the wrong pipe". Instead of going down the esophagus to the stomach, the material goes down the trachea to the lungs. Once lodged and lungs it can cause pneumonia. Why does it cause pneumonia? Because the lungs hate having foreign matter inside. So the lungs try to fight the foreign matter. The lungs attempt to fight the foreign matter is the very definition of infection. An infection in the lungs is called pneumonia.
There is a tendency for clinicians to undertreat patients with dysphagia. These clinicians feared that there is a risk of aspirating.
So, if repetitive practice works, but repetitive practice of swallowing is dangerous, what can you do? If a particular skill is not used (in this case swallowing), the portion of the brain that controls that skill will shrink. As that portion of the brain shrinks, the skill gets even worse. As the skill gets worse, that portion shrinks further... and a downward spiral is initiated. If the dysphagia patient is not swallowing, or not swallowing enough, the portion of the brain dedicated to swallowing will get smaller, and the skill will suffer.
There is emerging literature that electrical stimulation may initiate the neuroplastic process. Again, this is not only true for the hand and foot emerging research indicates that the same is true for swallowing. Electrical stimulation may provide the "X” factor that provides small amount of movement on which to build more robust movement. This same continuum of care (e-stim to repetitive practice) is used by clinicians in rehabilitation hospitals around the country to reestablish nominal movement. Although not functional swallowing, electrical stimulation provides early steps towards regaining the ability to swallow.
In terms of the repetitive practice itself, the generally accepted way of safely repeating swallowing is called the "The Frazier Water Protocol".
`=~