Tuesday, September 12, 2017

Movement is good full stop.

When I worked at the Kessler Institute in NJ, there was an idea for a study that bounced around for a few weeks. The study would involve answering this question: 

What would be the effect of a swift kick in the butt on stroke recovery? 

I'm pretty sure that study would never pass the ethics board. But(t) it is a joke that got to a fundamental truth: Clinicians make the process of recovery too complicated.

There is this notion among many clinicians that there should be a constant striving towards "function." That is, that the survivor should work towards some particular goal (i.e.: walking, dressing, eating, toileting, etc.)

I disagree. Movement, irrespective of function, is important. Here's an example…

Constraint induced therapy (CIT) for the upper extremity (arm and hand) involves working the arm and hand – a lot.

At the end of CIT, the survivor may, or may not be any more "functional." But maybe the wrong things are tested. If you're working with the upper extremity, then you'll test the upper extremity. But here's a weird side effect of CIT: better walking. Why? Because arm swing is made better. We may not think about the arms with regard to walking, but they are important in balance and timing.

And other things that are often not measured very often get better. Things like a reduction spasticity, less shoulder pain, more active range of motion. Movement, irrespective of function, is good.

Sunday, September 3, 2017

What are your chances of having a stroke? Where do you live?

Your chance of having a stroke may be influenced by where you live. Click on the map or the list and it will take you to the full interactive site.
Keep in mind: ~1 in 3 survivors will have a second stroke. If this map also reflects subsequent strokes, you may be able to modify whatever behaviors inherent in your geography.

Monday, July 31, 2017

Better movement through beer.

When you build a house you want to build a strong foundation. When it's a tree grows, it doesn't grow from the leaves inward, it grows from the seed outward. For every process of growth, there is a beginning, a foundation, a germinal point.

What is the foundation for movement after stroke? If you ask most therapists they will say it is trunk (torso) control. 
Trunk Control

Focus on trunk control is the analog to building a good foundation for a house. Trunk control, so the thinking goes, will provide a good foundation for the arms and legs to do their thing. 

Therapists will often continually talk about the trunk as being the most important foundational part of the movement. The way it is taught in therapy school is "proximal stability for distal mobility". And this idea-- to work from "the inside out" is not wrong per se. It's just not particularly right.

Some therapists obsess about the trunk. But what if we flipped it? What if the driver foundation of learning movement is the hand? Or the feet? But I actually don't think it is those, either.

The foundation of movement is the will of the mover.  
  • Mind: Expressed as intention (I want to do something)
  • Brain: Starts the movement (Expressed as an electrochemical command) 
  • Muscles: Move the limb (muscle contraction)
  • Hand: Expresses the original intention (grab a beer)
So the driver here is beer. Or sex. Or chocolate. The driver of motor (movement) control is the will of the person. The trunk will follow what the will decides.

Imagine an infant. They reach because they want something. There is no one there to hold them and they may be a little unsteady, but their intention to reach makes their balance better. 

The “will” of the hand drives the changes needed in the trunk. The trunk will learn, in a natural way, to get the hand where it needs to be. 

Thursday, June 1, 2017

Make the Home Exercise Program AWESOME!!

Years after stroke survivors have been discharged from therapy, recovery can continue.

Of course, the speed of recovery diminishes over time. There is no time that is quite as fertile as the period of natural recovery in the first few months after stroke. 

But recovery can continue. Stroke survivors should be encouraged to see discharge from therapy not as the beginning of the end, but as the end of the beginning. The baton of the conductor of the grand symphony of recovery is passed from therapists to survivor. 

Most of the time therapists will leave stroke survivors with little guidance for further recovery. Some therapists think “HEP” stands for “Hand ‘em photocopies.” Too often the HEP reflects nothing more than a watered down version of the exercises that were done in the clinic. 

Irony: The survivor is left with the same exercises that caused the very plateau that caused the discharge! 
A good home exercise program will help the survivor to continue making progress if it is started the day the therapist meets the survivor. Therapy itself can be part of the HEP. If the survivor and caregivers can see what goes into the basic concepts that therapists use all the time, they will be able to direct their own recovery long after they’ve forgotten your name. 

The HEP should explain:
--progression of exercise, 
--measuring and documenting progress, 
--tips on equipment needed for a home gym. 

Therapists: Your job is done. You would have liked more time with them, but this is all manged care has allowed. At least, you’ve helped them to be functional, safe and return home. 

Survivors: Your job has just doubled. Not only do survivors have to continue the quest towards recovery through their own efforts, but they have to do it without therapist's guidance. Leaving stroke survivors with the tools they need to continue the quest is critical helping them to be in the best position to reach the highest level of potential recovery.

Tuesday, May 2, 2017

Facebook Recovery

If you want great ideas for recovery, where do you find them? One of the best resources— I turn to it all the time for ideas— is the Young Stroke Survivors Global Network. Its a Facebook page chockablock full of suggestions, discussions, videos, links...

And lets face it... a lot of stuff on the web is either complicated or dubious:

Complicated: clinical research
Dubious: websites that exist to sell you something

Young survivors (young= willing and able to hyper-focus on recovery) come up with the best ideas. They're often educated and ambitious and willing to try to "push the issue." Thats where this Facbook group can help.

Wednesday, April 19, 2017

“Pusher” Syndrome-- the neuroplastic model of recovery

Pusher syndrome (PS) is an altered sense of reality. 

Survivors with PS (sometimes known as "pushers") believe that they are sitting or standing “upright” when they are tilted approximately 18° towards the "bad” side. 

Therapists may be exacerbating pusher syndrome. When survivors with PS are forced to a “upright” they feel like they're leaning too far towards the "bad" side. “Pushers” react to this feeling by leaning towards the affected side. They see any attempt to get them truly straight as a serious threat that inspires fear. 

Another term for pusher syndrome is listing phenomenon. This may be a more accurate term because "pushers" only become "pushers" when they are pushed. Anyone who was shoved 18° out of balance would push back! There are other terms that have been used for PS including:
·       ipsilateral pushing
·       contraversive pushing
·       pusher behavior.

PS affects approximately 5% (although some estimates are as high as 50%) of all stroke survivors.

Survivors with PS have had damage to portion of the brain that controls the feeling of upright body posture. The area damaged is called the posterolateral thalamus. Loss of this area causes PS.

Balance is determined by 3 systems: vision, vestibular (inner ear) and proprioception. Patients with PS typically only have damage to one of the 3 systems: proprioception. Clinicians can help by directing patient focus to the balance systems that are still intact. Therapists can help pushers by helping them to attend to vertical visual cues. One technique involves having the therapist sit in front of the seated patient. Then use any visual cues available in the room, or the therapist’s own body (i.e. the forearm held vertically) to have the patient reorient themselves to true vertical. Carr and Shepard (reference below) suggest having the patient purposely, and within a safety-controlled environment, repeatedly reach for an object towards the hemiparetic side. The patient is then instructed to bring themselves back to visually confirmed true vertical. This simple technique hits on two basic concepts of the neuroplastic model; task specificity (reaching for an object creating a challenge to balance) and repetitive practice. The repetitive practice in this case is repeatedly reorienting to true vertical. Therapists can help pushers by teaching the necessary movements needed to realign to vertical. As is true with many of the recovery options that drive neuroplastic change, it is repeated self-correction that rewires the brain.

Pushers should be encouraged to hold a vertical position no matter what everyday task they’re doing. This incorporates another core concept in the neuroplastic model: massed practice. Therapists who encourage constant realignment to true vertical—in and out of the therapy gym—help the survivor mass their attempts at righting and equilibrium reactions.

Although certainly not proven, I would bet that the rewiring necessary to correct PS does not happen in the thalamic region—the region damaged in stroke survivors with PS. Using repetitive, task specific massed practice may instead force an enlargement and/or strengthening of the cortical representation of the intact vestibular and visual systems. 

Therapists can help PS patients by providing shepherding guidance on this necessary neuroplastic journey.

1. Karnath HO, Broetz D. Understanding and treating "pusher syndrome". Phys Ther.2003 Dec;83(12):1119-25. 
2. Shepherd RB, Carr JA. Response to Discussion Paper: New aspects for the physiotherapy of pushing behaviour, D. Broetz and H.-O. Karnath, Neurorehabilitation 20 (2005), 133-138. NeuroRehabilitation. 2005;20(4):343-5.  

Tuesday, April 18, 2017

Work the good side and the bad side gets...better?

I do a lot of talks. Tons of them. Constantly. To therapists. And I say to them usually early in the day, "Look, I'm staring down the barrel of hundreds of years (sometimes more than a thousand) years of clinical expertise. One of my goals today is to have you share your best ideas. That way, tomorrow, when I do another talk, I can present your idea, claim its my own, and give you no credit." They laugh. Its funny because its true. And they do give me their ideas and I do steal them and then present them in my book, articles, talks, or this lovely blog. 

And here's a stroke-recovery strategy I got the other day form the fine therapists at BONE Physical therapy and Rehabilitation (they appear not to have a website, but that link will at least get you a phone number.) They're in Columbus, GA.

Training the "good" side

In folks who have not had a stroke, we've known this for decades: If you strengthen only one side (say, your left side) the other side strengthens too.

It's true in survivors as well: If you strengthen (so says some preliminary research) the unaffected side, the effected side gets stronger. A researcher at the University of Victoria, Canada, Katie Dragert, appear to be the scientists who have explored this issue the most.

Here's an example: If you do resistance training for the dorsiflexion on the "good" side...
... the "bad side" gets stronger.

How did they do it? 
•Stroke survivors did performed 6 weeks of maximal dorsiflexion. 
•What did they gain on the "good side"?
~34% strength increase on the "good side."
•What did they gain on the "bad side"? 
~31% strength increase on the "bad side." 

We also know that bilateral training -- when you use both sides together, the "good" side helps the "bad" side become more coordinated. your challenge is to find a way to put these two concepts...
1. strengthen the good to strengthen the bad
2. use the good to train the bad
into recovery.

Thursday, April 6, 2017

"My dream for the future is to help as many people as I can possibly help"

I get a chance to communicate to a lot of survivors. I've treated them clinically and in experimental research protocols. I've also been in contact with a lot of survivors during my talks. And then of course, social media and email. 

Survivors, to varying degrees, are usually pretty good at explaining with appropriate passion what its like to have, survive and thrive after stroke.

One of best I've found so far has been Bill Torres. Find his story here. (Bring tissues.)

Tuesday, February 28, 2017

Drink Up!

I got an interesting question from a therapist at a recent stroke talk: "What is the effect of dehydration on stroke recovery?"

I said what I often say when interesting questions come up that I don't have an answer for: "Email me that question… We'll look at it together"

It turns out the dehydration is thought to be a cause of stroke.

Further, if a stroke survivor is dehydrated when they're admitted to hospital, worse recovery can be predicted. And dehydration when admitted is predictor of discharge to long-term care (read: nursing home).

So, drink up! because, more than one third of all survivors will have another stroke.

Saturday, January 14, 2017

Can Stress Cause a Stroke? You bet!

If you've had a stroke you have ~35% chance of another stroke. Finally proof: Stress can cause a stroke. 
(Stress= ↑ Blood Clotting = Stroke)
Debbie Reynolds died recently just one day after her daughter, Carrie Fisher died. The press says she died of a "broken heart." And that is probably true. There is now science that shows that stress can cause stroke and other cardio vascular diseases. 
(The Lancet abstract to this research here. Non-nerd take here.)

But the connection between stroke and stress is indirect. Here's the story:

The amygdalae (plural; there are 2 of them. Singular: amygdala) are small marble sized structures responsible for emotions.

In folks who have cardiovascular disease (like stroke) there is more activity in the amygdala.

This increased activity causes more C-reactive protein in the blood. C-reactive protein you guessed it— clots blood

Blood clot in the brain = stroke.

Blog Archive